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Dihedral for Spiral Stability
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Nomenclature

airframe acceleration

wingspan

lift coefficient of the wing

wing chord

lift coefficient of a wing section, two dimensional
magnitude of the acceleration of gravity
moment arm of the fin (vertical tail)
moment

wing area

airframe velocity, relative to the air mass
body coordinate positive forward

body coordinate positive to the right
body coordinate positive down

= angle of attack of the fin (vertical tail)
wing angle of attack

@, zero lift angle of attack of the wing

. = modified angle of attack of the wing
angle of sideslip

wing dihedral angle

wing dihedral angle for neutral spiral stability
dimensionless spanwise variable, 2y/b

= bank angle

= angular velocity
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I. Introduction

HIS Note sets forth a rule of thumb to determine the

wing dihedral angle that assures lateral stability in a low-
speed airframe. The amount of dihedral T', that corresponds
to neutral stability against the spiral mode is related to the
wing angle of attack, measured from zero lift, and to the ratio
of wingspan to fin moment arm:

r, = K(b/lf)(aw - ) ey

Section II offers an approximate, “back of the envelope”
derivation of (1), assuming a rectangular spanwise lift distri-
bution. Section III compares the predicted I', to data obtained
from a full six degrees-of-freedom dynamic computer simu-
lation. Section IV refines the analysis to address a general lift
distribution. The value of « in (1) depends on the shape of
the distribution. Sample values are

1 = 0.67 (rectangular)
x = {3m/16 ~ 0.59 (elliptic) )
i = 0.50 (triangular)
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II. Rudimentary Analysis

A forward, right, down body system of coordinates is used
throughout. Components of vectors are in the body system
and are denoted by subscripts x, y, z.

When an airplane is banked at an angle ¢, gravity produces
a lateral acceleration

a, = gsing 3)

This causes the trajectory to curve. The fin (vertical tail),
acting as a weathervane, forces the airplane to turn and re-
main approximately aligned with the curved trajectory. The
rate of turn is

w, = a,/V = (g/V)sing 4)

The yaw rate creates an asymmetrical flow over the air-
frame. The wing on the outside of the turn travels faster than
the wing on the inside, creating more lift, and therefore, a
rolling moment into the turn, hence, spiral instability.

The local velocity along the wing is V + w,y. The first-
order rolling moment that results is

b2
M, = pVo, f oy SV A (5)

Assume a rectangular lift distribution
cc = C,,.S/b (6)

where C,,, is the lift coefficient of the wing. When (6) is
substituted in (5), one finds

MI,\‘ = Tl2_("prs‘/a)zb2 (7)

Converted to a moment coefficient (normalized to the volume
bS') this becomes

Cuy = C . (bw,/6V) = C, (bg/6V?sing ®

This rolling moment tends to increase the bank. To insure
spiral stability, it must be canceled and reversed by some other
rolling moment.

The asymmetrical flow also creates yawing tendencies. One
way that this arises is through increased drag on the outside
wing, which tends to yaw the nose of the airplane to the
outside of the turn. This effect may be calculated similarly to
Eq. (5), but with lift replaced by drag. The effect is much
smaller because wing drag is much smaller than wing lift. We
will neglect this contribution.

A more significant effect is produced by the fin. The yawing
creates a side flow at the fin in the amount of w,/,. Given this
lateral flow and any sideslip angle 8 that may exist, the angle
of attack of the fin becomes

o, =B — ([w./V) )

The weathervane effect forces this angle of attack to zero,
creating a sideslip angle

B = Lw./V = (l,g/V?)sing (10)

The banked and turning airplane, left to its own devices,
points towards the outside of the turn. This is a well-known
secondary effect. Pilots performing a steady turn compensate
by applying rudder into the turn. They also neutralize the
moment (5) by applying aileron against the turn.

The passive, controls fixed, airframe actually maintains a
sideslip angle while it turns. This is where the effect of dihedral
comes in. A dihedral angle I' combined with a sideslip angle
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B changes the effective value of the angle of attack of the
wing from «,, to . This is a well-known, purely geometric
effect,' which, if linearized in all angles, amounts to

a, =a, T8 (11)
The angle of attack of the upwind wing increases and that of

the downwind wing is reduced. The result is a rolling moment
in the amount

M, = —zC,, I'BpSbV> (12)
Equation (12) again assumes a rectangular lift distribution.
The moment M., acts against the turn. Reduced to a coef-
ficient, with 8 substituted from (10), it becomes
Crae = —%C,_w,,l‘(l,.g/vl)sin¢ (13)

Adding (8) and (13), the rolling moment coefficient be-

comes
_ bg § Crva Q p
=CL.>5 <1 2 b I' | sing

Cue = Copiy + Capa,

lLw 6V C[_”
(14)
In the last expression we substitute
C.. 1
wa 15
Cru a,, — Qg (15)

to get

- c b& 3_ T B
Coue = Cp 612 (1 da. —a.b sin ¢ (16)

The condition for spiral stability is that the coefficient of
sin ¢ in (16) be negative. This translates into I" greater than
T, of Eq. (1), with k =

wallu

III. Computer Simulation

One now proceeds to test the rule of thumb (1) against a
full, nonlinear, six degree-of-freedom computer simulation.

The airframe model, shown in Fig. 1, is inspired by the
Cessna 150, with which it roughly agrees in configuration and
weight. The model consists of 19 point masses and 12 aero-
dynamic panels. The panels are numbered by an index i and
the masses by an index k. The c.p. of each panel is indicated
by an open circle. Each mass is shown as a shaded sphere.
Values of mass and area are indicated on the figure in pounds
and square feet, respectively. In the case of the wing panels
the mass coincides with the c.p. A typical wing panel weighs
50 Ib; the inboard panels (that hold the fuel tanks) are 117.5
Ib. No mass was associated with tail panels. The typical fu-
selage mass is 37.5 lb. Larger masses represent the engine,
crew, and baggage. For simplicity, one set of aerodynamic
tables is specified for all panels. These tables represent a
cambered airfoil, appropriate for the wing. We use this same
airfoil, set at a lower incidence, for the horizontal tail. For
the vertical tail, we overcome the asymmetry of the panels
by superposing two of them, facing opposite ways.

No representation is provided for the aerodynamic effects
of the fuselage, landing gear, struts, etc. The double-panel
arrangement doubles the effective area of the fin and makes
up for missing side area of the fuselage. The big mass in the
nose is the engine; however, we do not represent its thrust,
but rather study the airframe dynamics, power off.

The program that integrates the dynamic equations and
computes the motion of the airframe, ATRPLANE (Ref. 2), is
written in C+ + . The code “includes™ the user-defined types
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Fig. 1 Airframe model.

for three dimensions.®* The types in question are vector,
matrix, and Q (for quaternion). This allows vectors, 3 X 3
matrices, and quaternions to be represented as single com-
puter variables. In this way the code can be close to the
equations, which makes it more compact, more readable, and
less prone to error.

The general properties of the airframe are

W = gross weight, 1600 1b

S = wing area, 157 ft*

b = wingspan, 33.3 ft

S, = horizontal tail area, 30 ft>

[, = horizontal tail moment arm, 11.97 ft

S, = vertical tail area (each panel), 20 ft?

[, = vertical tail moment arm, 13.07 ft

a,; = wing incidence, 3.5 deg

a,; = horizontal tail incidence, 0 deg

a,, = wing zero lift angle of attack, —2.9 deg

The airframe trims out at an angle of attack @« = —1.9 deg

(about 4.5-deg above the wing zero lift) and at a calibrated
airspeed of 83 kn.

Figure 2 shows histories of the three components of body
system angular velocity @ computed by ATIRPLANE for the
zero dihedral airframe. The initial conditions of the simulated
flight deliberately included 1 deg of sideslip. The curve of w,
(pitch) reflects the stable longitudinal short period and phu-
goid. The lateral components of w also undergo a fast and
highly damped short period oscillations. When these have
decayed, a divergence occurs. w, and w. slowly grow, showing
that the airframe enters a spiral to the right. This is as ex-
pected. The Cessna 150 that inspired the model is not stable
in the spiral mode, and this is typical of manned aircraft.



J. AIRCRAFT, VOL. 32, NO. 4:

0.010
S o008
0 0.008 a - -
n [ A
. 0.006 i i 7 .
= i i I Ay
S 0.004 f foed sy Y y
o 0.002f T AR R P .
=3 . N | S e “H 1 Y 1 \ !
2 e nmmee T I L N W e O
L1 H 1. .
g 0.000 TR S B A
S ~0.002 4 L Yif Yof L,
—Y. I v T H
> i v P Vi W
&, ~0.004 - i Lo yoid %
= 0.006 i i \ W/
IR i Y - Roll
g -0. 3 e e Pitch
< 008 L e Yaw
-0.010 i H
0 10 20 30 40 50 60 70 80 90 100
Time (seconds)
Fig. 2 History of angular velocity (I' = 0).
0.010
o
9 0.008 Ay
n iy I
. 0.008 j : T
z i I i i
S 0.004 i ot iy Fid
~ foA HEE! iy it i
5 0.002 foid ik Lo LA i
- i \ ' |‘ ’ ! I’ ‘\ !
'S 0.000 SIS S N i S
S ! i o v Vi
© —-0.008 ; b b LS L
= i v (W Vo v/
s, —0.004 it Loiy Voot bk Yo
= 0.006 - iy ¥ \ .
= =0 y 1} (3
én i " i/ i Roll
-0.0084 AL SRR S S S Pitch
< \_' ------ Yaw
-0.010 i i
0 10 20 30 40 50 60 70 80 90 100
Time (seconds)
Fig. 3 History of angular velocity (I' = 8 deg).
0.002 Ty :
0.002 S S S =7
- e L ”,//
o 0.001 =
% [ —
= 0.001
=
S
0.000
)
-‘S —— Dihedral = 0 deg
s —0.001 rmee— =1 deg.|
= = 2 deg.
-0. = 3 deg. |.....
>(E oot = 4 deg.
= 5 deg.
-0.002 -— = 6 deg. |-
............ = 7 deg.
—0.002 — Dihedral = 8 deg.
0 10 20 30 40 50 60 70 80 90 100

Time (seconds)

Fig. 4 Effect of dihedral on spiral stability.

Figure 3 shows the time histories of angular rates for an
airframe modified only in that the wing dihedral is 8 deg. The
initial conditions are the same. One can see that no spiral
develops. Figure 4 shows, on an enlarged scale, a sequence
of histories of the yaw rate for dihedral varying from zero to
8 deg, in 1-deg increments. Neutral spiral stability is crossed
between 6—8 deg of dihedral. The value of I'; predicted by

(1) is
2 % 30 ft
_ 2 X 30t g des + 354
Fo= 3 mornl 10 dee °8

~ (—2.9 deg)] = 6.9 deg : 17
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The results of the computer simulation are subject to the
simplifying assumptions embodied in the model. In particular,
a rectangular lift distribution is assumed, and steady-state
aerodynamic data is used in a dynamic situation. The simu-
lation does compute the six degree-of-freedom dynamics rig-
orously and allows all rigid airframe modes to interact nat-
urally. It shows that the assumptions of Sec. II, weathervane
effects, etc., are substantially correct. The accuracy of the
computer simulation is addressed in Appendix A, where it is
shown that the values plotted, even at the end of the 100-s
interval, are accurate within 2.5%.

IV. Limitations and Extensions
The derivation of Sec. II assumed a rectangular spanwise

distribution of lift (6). Now replace (6) by a general symmetric
distribution

cic = (CL,S/b)f(2ylb) (18)

where f is defined on the domain [ —1,1], and satisfies

f(=m) = f(m) (19)
1
f“ fln)dn =1 (20)
This has the effect of replacing M|, of Eq. (7) by
1 1
M, = 2 CoupSVor [ finyn an (21)

M,, of (12) changes into

1 1
My = - C.oI'BpSHV? f“ f(p)m dny (22)

When both moments are transformed into coefficients and
added together, (14) is replaced by

b 1
Cuy = Gy + Cpae = Csz_‘i'f f(m)n? dn
0

1C,.,.0 .
X (1 e E’r) sin ¢ (23)
where
K = L fmm® dn/f“ fepn dn (24)

The requirement for spiral stability is that the coefficient of
sin ¢ in (23) be negative, which leads to (1).

The value of «, determined by (24), must lie between 0—
1. Lift concentration at the centerline leads to low «; spread-
ing of lift towards the wingtips tends to increase . A practical
range may lie between the square distribution (Sec. II, x =
1) and the triangular distribution (x = 1).

In the case of the elliptic lift distribution

f) = WmV1 - »° (25)

The integral in the denominator of (24) may be evaluated by
elementary methods and comes to 4/34. It is shown in Ap-
pendix A, by use of the Cauchy integral theorem, that the
definite integral in the numerator is i. Together they yield
k = 37/16 = 0.59.

Equation (1) accounts for the effect of the wing dihedral
only. As is well known, other factors such as the placement
of the wing, high or low, contribute to rolling moment due
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Table A1 Precision at t = 100s

At w,, w,, w

S rad/s rad/s ra(zi}s

0.01 0.00254935 0.00456295 0.01518767
0.001 426 46752 1564
0.0001 75 5811 840
Error (@ At = 0.01s 0.00000460 0.00010484 0.00006927
Percentage 0.18% 2.35% 0.45%

to sideslip. An accurate determination of stability and dy-
namic response requires a more rigorous analysis, and ulti-
mately a detailed simulation or live test. Equation (1) is merely
a quick “ballpark™ estimate.

Appendix A: Computational Error

The computer program AIRPLANE integrates the six de-
gree-of-freedom rigid airframe equations by an advanced/re-
tarded Euler integration scheme. All computations are carried
out double precision (51 bit mantissa—15 digit accuracy). A
time step of 0.01 s is used. The solution is constructed for a
period of 100s (10,000 steps). With these parameters, the
dominant source of error is the use of finite steps. The error
builds up with time. It can be reduced by decreasing the
integration step At.

Table Al demonstrates that this is indeed so. The values
of the three components of @, computed for 1 = 100 s (the
worst case), are presented. The values obtained with Ar =
0.01 s are compared to ones obtained with Ar = 0.001 s and
Ar = 0.0001 s. It is seen that the values converge as At is
reduced. (Only the digits that change are shown in subsequent
lines.)

Accepting @ at ¢ = 100s computed with Ar = 0.0001 s
as ground truth, the errors in the values obtained with Az =
0.01 s can be found (Table Al). The error in w, amounts to
2.35%. The error in the other components is a fraction of a
percent.

Appendix B: Evaluation of Definite Integral
The definite integral

1 .
12[) V1 — nin2dy (B1)

is evaluated by use of Cauchy’s theorem. Consider the inte-
grand as a complex function of the complex variable . This
function is single valued in the complex n plane with a slit
running between —1 and 1. The integrand is positive just
below the slit and negative just above the slit. It is easy to
see that

1
1= Zfﬁ V1 = 9’ dn (B2)

where the contour C runs counterclockwise around the slit.
This contour may be deformed into the large circle C’ (Fig.
B1) without changing the value of the integral.

Now expand the integrand in powers of 1/7:

VI - np® = V1 = (I’ = in’
= (ig/2) — (il8n) + -+ (B3)
The expansion converges for |n| > 1, therefore, converges on
C'. The contour integral becomes equal to 27 times the res-
idue at the simple pole, therefore,

I = 2ni[—(iI8)] = =/16 (B4)

The integral in the numerator of (24) is (4/7)] = i
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Fig. Bl Integration contours in the complex n plane.
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Stable Cross-Type Parachute with
Inflation Aid

Karl-Friedrich Doherr*
DLR, German Aerospace Research Establishment,
D-38108 Braunschweig, Germany

Introduction

HE reduction of the minimum altitude needed for a safe

release of personnel and payloads from low-flying air-
craft is a real challenge to the parachute designer. The prob-
lem posed is to design a very reliable parachute system with
short filling time, high drag coefficient, and little or no ten-
dency to oscillate. In the following, a new parachute design
is discussed that seems to have the potential to be used safely
from low-flying aircraft and from helicopters as well.

Design of the LAP-LEONARDO Canopy

Several years ago Hoenen' invented a stable version of the
cross parachute (German Patent DP 27 06 006 A1). The sta-
bilizing effect was achieved by arms of trapezoidal shape plus
horizontal slots between the roof and the four arms of the
canopy (Figs. 1 and 2). This parachute (called STABKREUZ)
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